The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^3 - 3*x1^2 + 3*x1 - 1 1 x1 - 1] [0 1 1 2*x1^2 - x1 0 0 1 x1 2*x1^3 - 3*x1^2 + x1 -x1 + 1 -x1^2] [0 0 0 0 1 1 1 -x1 + 1 -2*x1^3 + x1^2 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^11 - 11*x1^10 + 21*x1^9 - 6*x1^8 - 41*x1^7 + 78*x1^6 - 69*x1^5 + 34*x1^4 - 9*x1^3 + x1^2) avoiding the zero loci of the polynomials RingElem[x1, 2*x1 - 1, x1 - 1, x1^3 - x1^2 + 2*x1 - 1, x1^2 + x1 - 1, x1^4 + 3*x1^3 - 6*x1^2 + 4*x1 - 1, x1^4 + 2*x1^2 - 3*x1 + 1, 3*x1^3 - 4*x1^2 + 3*x1 - 1]